
[14:49 19/10/2011 Bioinformatics-btr511.tex] Page: 3206 3206–3208

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 22 2011, pages 3206–3208
doi:10.1093/bioinformatics/btr511

Gene expression Advance Access publication September 7, 2011

survcomp: an R/Bioconductor package for performance
assessment and comparison of survival models
Markus S. Schröder∗, Aedín C. Culhane, John Quackenbush and Benjamin Haibe-Kains∗
Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
Associate Editor: Janet kelso

ABSTRACT

Summary: The survcomp package provides functions to assess
and statistically compare the performance of survival/risk prediction
models. It implements state-of-the-art statistics to (i) measure the
performance of risk prediction models; (ii) combine these statistical
estimates from multiple datasets using a meta-analytical framework;
and (iii) statistically compare the performance of competitive models.
Availability: The R/Bioconductor package survcomp is provided
open source under the Artistic-2.0 License with a user manual
containing installation, operating instructions and use case scenarios
on real datasets. survcomp requires R version 2.13.0 or higher.
http://bioconductor.org/packages/release/bioc/html/survcomp.html
Contact: bhaibeka@jimmy.harvard.edu; mschroed@jimmy.harvard.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Building risk prediction or survival models is an important area
of research, especially in cancer where gene expression signatures
are used to predict risk of metastasis, response to therapy and
overall survival. However, assessing the relative performance of
such models is complex due to the lack of standards regarding
the best criterion to use in survival analysis (Table 1; Haibe-
Kains et al., 2008). Although a number of model performance
estimators have been described (Cox, 1972; Graf et al., 1999;
Harrel et al., 1996; Heagerty et al., 2000; Royston and Sauerbrei,
2004; Verweij and Houwelingen, 1993), they are not widely used.
This is partly because these are implemented in many different R
packages that use heterogeneous interfaces, which makes it difficult
for the non-specialist to easily use or compare the performance
of these models. Another challenge in assessing performance of
expression-based prediction models is a lack of power due to small
sample size. Meta-analytical methods could leverage power from
the numerous microarray datasets that are now publicly available by
summarizing model performance estimated in multiple-independent
studies. Moreover, because they enable efficient joint analysis of
multiple datasets, such an analytical framework reduces the risk of
artifactual discoveries that are due to bias or confounding factors
that may be present in one dataset. This is particularly important
when comparing competitive risk prediction models; often authors
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Table 1. Functions in survcomp to measure the performance of risk
prediction models

Name Function in survcomp References

Concordance index concordance.index Harrel et al. (1996)
D index D.index Royston and

Sauerbrei (2004)
Hazard ratio hazard.ratio Cox (1972)
Brier score sbrier.score2proba Graf et al. (1999)
Cross-validated
partial likelihood

cvpl Verweij and
Houwelingen (1993)

Time-dependent ROC
curve

tdrocc Heagerty et al. (2000)

Kaplan–Meier curve km.cox.plot Kaplan and Meier
(1958)

Forestplot forestplot.surv Lewis and Clarke
(2001)

claim better performance of a new model without properly assessing
whether a model significantly outperforms its competitors. To the
best of our knowledge, there is no commercial or open-source
tool to enable statistical comparison of risk prediction models in
a meta-analytical framework.

To address these issues, we developed a new Bioconductor
package, survcomp, which implements several performance criteria
for risk prediction models (Table 1), together with meta-
analytical methods that enable combination of performance
estimations from multiple-independent datasets [fixed- and
random-effects models (Cochrane, 1954); ?combine.est], and
statistical comparison of predictions between competitive models
(?cindex.comp for the concordance index). The concordance
index as described by Harrel et al. (1996) and implemented
in survcomp may be sensitive to the study-specific censoring
distribution, therefore we are working to implement a modified
concordance index by Uno et al. (2011) that avoids this problem
and which should be available in the next release of survcomp.

Although the performance criteria that are implemented in
survcomp are mostly available in other R packages (except the D
index which, to the best of our knowledge, is only in survcomp),
our package provides a common interface to facilitate easy use
of all these estimators. Moreover, with the exception of ipdmeta
by Broeze et al. (2009) and survJamda by Yasrebi (2011), few
R packages perform meta-analysis of survival data. survcomp
provides a uniform interface to simplify the use of performance
assessment and statistical comparison of risk prediction models,
and provides new R functions to statistically compare these in
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Fig. 1. Forestplots representing the prognostic value of (a) NPI, (b) AURKA, (c) GGI and (d) GENIUS estimated by the concordance index in five independent
breast cancer datasets [none of these datasets were used to train the classifiers (a)–(c), duplicated patients were removed what results in a combined dataset of
722 patients]. The blue square and horizontal line represent the concordance index and its 95% confidence interval which is clipped at 0.4 and 0.9 (represented
by an arrow). The black rhombus is the overall meta-estimate from the combined five datasets. The greater the concordance index, the more prognostic the
risk prediction model. The vertical red bar represents the concordance index of random risk predictions.

a meta-analytical framework. It is worth noting that the aim of
survcomp is to provide efficient computation of several performance
estimates (Table 1) and not to implement a full validation framework.
Proper validation using a fully independent test dataset is of utmost
importance to avoid overoptimistic results (Jelizarow et al., 2010)
and frameworks for cross-validation, multiple random splits or a
single split into training/validation datasets are implemented in
several existing R packages including peperr (Porzelius et al., 2009).

We illustrate the functionality of survcomp in a case study that
investigates prognosis in breast cancer. In most studies, this is a
difficult task due to the (generally) small sample size. Yet despite
a large number of published studies, data heterogeneity, both in
terms of data sources and microarray technologies, have limited
the effectiveness of their joint analysis. Here we apply survcomp
functions to statistically compare the prognostic value of a widely
used clinical model, a single proliferation gene and two published
gene signatures. The results suggest that the multi-gene signatures
are not always superior to standard clinical models or to a simple
single gene model.

2 CASE STUDY
The prognostic ability of gene expression of AURKA, a single
proliferation-related gene, was compared with the Nottingham
Prognostic Index (NPI, Galea et al., 1992) clinical model for
prognosis, and to risk prediction scores from two published
multigene prognostic signatures; GGI (Sotiriou et al., 2006) and
GENIUS (Haibe-Kains et al., 2010). The NPI, GGI and GENIUS
risk scores were calculated using the Bioconductor package genefu.
Each score was computed in five publicly available datasets
described in the Supplementary Material.

To compare the prognostic ability of these four different
risk prediction models, we estimated the concordance index
for each model in each dataset separately and used the
function combine.est to compute the corresponding overall
meta-estimate using the well-established random-effects model
approach (Cochrane, 1954). As can be seen in Figure 1, although
the performance varies between datasets, all models yielded highly
significant overall prognostic value (high-risk predictions represent
patient with poor survival, concordance index >0.5, one-sided P<

Table 2. Statistical performance comparison for the risk prediction models
used in our case study

Models NPI AURKA GGI GENIUS

NPI 0.25 0.37 0.91
AURKA 0.75 0.70 0.98
GGI 0.63 0.30 0.97
GENIUS 0.09 0.02 0.033

P-values are computed using a one-sided paired Student’s t-test to test whether risk
prediction models in rows are better than the ones in columns.

0.001, see Supplementary Material for R code). AURKA, the single
proliferation gene, was the worst predictor of survival (concordance
index of 0.64), whereas GENIUS, the risk prediction model taking
into account the breast cancer molecular subtypes, was the best
(concordance index of 0.69). The continuous risk prediction of NPI,
the traditional clinical model which combines nodal status, tumor
size and histological grade, yielded a relatively high concordance
index (concordance index of 0.66).

To identify the best risk prediction model(s), we statistically
compared their concordance indices using the function
cindex.comp.meta (Table 2). Concurring with Haibe-Kains
et al. (2010) we observed that GENIUS outperforms AURKA, GGI
and NPI (uncorrected P<0.10; Table 2). However, when P-values
are corrected for multiple testing (Holm’s method), no P-value
remains significant suggesting that a larger meta-analysis is required
to definitively claim the superiority of one classifier over another.
This also suggests that prognostic clinical models such as NPI are
still extremely competitive compared with more complex gene
signatures. Repeating this analysis using performance criteria in
survcomp other than the concordance index, including the D index
or hazard ratio (Table 1), leads to similar conclusions (examples
are provided in the package user manual and documentation).

3 CONCLUSION
The R/Bioconductor package survcomp provides a uniform interface
to an extensive set of performance assessment and statistical
comparison methods for survival/risk prediction. It allows scientists
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to easily implement large comparative studies integrating multiple
independent datasets while providing statistical tools to identify the
best model(s) as supported by the data under study.
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